article 100

Un amplificateur à transistors JFET et bipolaires

J'invite le lecteur à consulter le site pour des informations complémentaires.

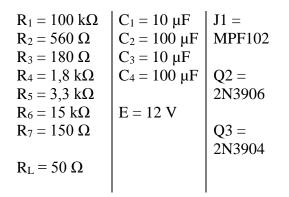
Page d'accueil du site Internet : page d'accueil

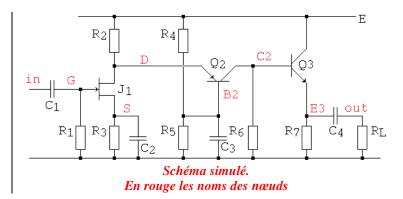
d'autres pdf, sur différents sujets : <mark>liste des PDF</mark>

Cet article, à but pédagogique, montre l'association d'un JFET en « source commune » d'un PNP en « base commune », et d'un NPN en « collecteur commun »...

La cascade de ces 3 montages fondamentaux donne un amplificateur moyennes fréquences, dont nous allons caractériser le fonctionnement.

La source est: https://www.next.gr/rf/amplifiers/Broadcast-band-rf-amplifier-l13377.html


Sous ce site, quelques lignes d'explication sont données, ainsi que les caractéristiques de la réponse harmonique : gain 30 dB, bande en fréquence [100 Hz; 3 MHz]. Le texte indique que la « sortie RF » peut débiter sur 50 Ω . Pas d'information numérique sur la polarisation, ni sur le fonctionnement temporel (tension maximale de sortie ?). Et aucun calcul, ni simulation, ni essais pratiques...


C'est donc un schéma intéressant, mais qui mérite d'être analysé plus finement.

Mes premières simulations sur ce schéma m'ont montré que les caractéristiques données n'étaient pas obtenues, surtout avec une charge de 50Ω en sortie.

J'ai dû modifier les valeurs numériques de quelques résistances pour disposer d'un ampli plus performant que je présente ici. Par la suite, un nouveau schéma, amélioré, est proposé.

1) Analyse théorique du schéma.

1.a) Présentation succincte

L'entrée est sur le JFET J_1 , monté en source commune, découplage par C_2 . La sortie de cet étage est sur l'émetteur de Q_2 , monté en base commune, découplage par C_3 . On ajoute Q_3 , étage collecteur commun pour pouvoir débiter sur une faible impédance.

Les transistors sont en liaison directe. C_1 et C_4 sont des condensateurs de liaison qui coupent les composantes continues, pour ne pas perturber la polarisation.

L'amplificateur est inverseur, par l'étage J_1 . La résistance R_3 permet de régler sa polarisation. Les étages à Q_2 et Q_3 sont non inverseurs.

Le JFET est un MPF102. Il est ancien (obsolète), d'usage général, et est dans la librairie JFET.lib

Les transistors bipolaires sont : 2N3906 ($f_T = 250$ MHz à $I_C = 10$ mA) et 2N3904 ($f_T = 300$ MHz à $I_C = 10$ mA). Ils sont dans eval.lib.

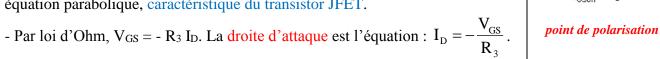
1.b) Calcul de la polarisation

- Etage J₁.

Remarque: La data sheet du MPF102 indique I_{DSS} entre 2 mA et 20 mA, et V_{GSoff} à – 8 V max.

Les valeurs typiques de ces paramètres ne sont pas données par le constructeur.

Pour un calcul de la polarisation, on peut exploiter les valeurs numériques données par le modèle PSpice.


Sous Pspice: V_{GSoff} est nommé VTO, et vaut -3,41 V.

$$I_{DSS} = \beta \text{ VTO}^2$$
. $\beta \text{ vaut } 1,04 \ 10^{-3}$. Il en résulte $I_{DSS} = 1,04 \ 10^{-3}$ x $3,41^2 = 12,09$ mA.

La maille d'entrée donne un système de 2 équations à 2 inconnues :

- En première approximation, en régime saturé : $I_D = I_{DSS} (1 - \frac{V_{GS}}{V_{GSoff}})^2$,

équation parabolique, caractéristique du transistor JFET.

La valeur de R₃ permet le réglage du courant de polarisation du JFET. Si R₃ diminue, la pente de la droite d'attaque augmente et $|V_{GS}|$ diminue, I_D augmente. (A l'extrême, si $R_3 = 0$, $V_{GS} = 0$, $I_D = I_{DSS}$).

Le point de fonctionnement peut se lire sur le plan I_D, V_{GS}, ou par le calcul.

L'annexe 1 donne le calcul. Pour
$$R_3 = 180 \Omega$$
, on obtient $I_D = 5.8 \text{ mA}$ et $V_{GS} = -1.046 \text{ V}$.

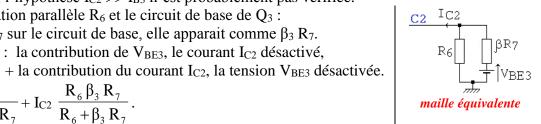
- Etage Q₂.

On admet I_{B2} négligeable devant le courant de pont R₄ R₅.

D'où
$$V_{B2} = E R_5 / (R_4 + R_5) = 12 \times 3.3 \text{ k} / (1.8 \text{ k} + 3.3 \text{ k}) = 7.765 \text{ V}.$$

On admet $V_{EB2} \approx 0.7 \text{ V}$. Il vient : $V_D \approx 7.765 + 0.7 = 8.465 \text{ V}$.

 R_2 est soumise à $(E - V_D) = 12 - 8,465 = 3,535V$, et donc parcourue par $I_{R2} = 3,535 / 560 = 6,3$ mA.


Comme
$$I_{C2} = I_{E2}$$
, la loi des nœuds donne $I_{C2} = I_{R2} - I_{D1} = 6.3 \text{ mA} - 5.8 \text{ mA}$. $I_{C2} = 0.5 \text{ mA}$.

Devant cette valeur, l'hypothèse I_{C2} >> I_{B3} n'est probablement pas vérifiée.

Observons l'association parallèle R₆ et le circuit de base de Q₃ :

En faisant glisser R_7 sur le circuit de base, elle apparait comme β_3 R_7 .

Le potentiel V_{C2} est : la contribution de V_{BE3} , le courant I_{C2} désactivé,

$$Soit: V_{BE3} \; \frac{R_{_{6}}}{R_{_{6}}+\beta_{_{3}}\,R_{_{7}}} + I_{C2} \; \frac{R_{_{6}}\,\beta_{_{3}}\,R_{_{7}}}{R_{_{6}}+\beta_{_{3}}\,R_{_{7}}} \, .$$

On admet
$$V_{BE3} = 0.76 \text{ V}$$
 et $\beta_3 = 165$ (valeurs confirmées par la suite). Il vient $V_{C2} = 0.76 \ \frac{15 \ k}{15 \ k + 165 \ x \, 150} + 0.5 \ m \ \frac{15 \ k}{15 \ k + 165 \ x \, 150} = 0.287 + 4.669. \ \boxed{V_{C2} = 4.96 \ V}.$

- Etage Q₃.

$$V_{E3} = V_{C2} - V_{BE3} = 4,96 - 0,76 = 4,2 \text{ V}.$$

Le transistor sera polarisé avec $I_{E3} = V_{E3} / R_7$, soit 4,2 / 150. $I_{E3} = 28 \text{ mA}$.

Remarque : la dynamique du potentiel de V_{E3} n'est pas [0; E], mais dépend de celle de V_{C2}. Et le potentiel de V_{C2} est lié à R₆ et I_{C2}, lui-même dépendant de R₂ et I_D, donc de R₃...

Au bilan, R₃ règle la polarisation de J₁, mais, par loi des nœuds au potentiel D, également celle de Q₂, conjointement avec le pont R₄, R₅, puis, par le choix de R₆ et R₇, celle de Q₃.

Il est bon de rappeler que les paramètres I_{DSS} et V_{GSoff} du JFET sont donnés avec une très large tolérance. La polarisation calculée et/ou simulée peut donc être très différente de celle obtenue en pratique. Ce genre de montage, peu robuste, nécessite des résistances réglables pour ajuster la polarisation.

Q2N3906

1.c) Simulation de la polarisation (annexe 4 fichier ampli_j_2bip.cir)

La simulation .OP de Pspice confirme, pour les 3 transistors, les courants calculés.

On repère, pour le paragraphe suivant : $g_{m1} = 4,97 \ 10^{-3}$. $g_{m2} = 0,0189$. $g_{m3} = 144$. $g_{m3} = 0,833$.

	ITB	-Z.38E-U6	1.66E-U4
	IC	-4.93E-04	2.74E-02
T1	VBE	-6.84E-01	7.59E-01
	VBC	2.87E+00	-7.10E+00
	VCE	-3.55E+00	7.86E+00
	BETADC	2.07E+02	1.65E+02
	GM	1.89E-02	8.33E-01
	RPI	1.09E+04	1.73E+02
	RX	1.00E+01	1.00E+01
	RO	4.38E+04	2.96E+03
	CBE	1.70E-11	2.61E-10
7.05E-15	CBC	3.92E-12	1.76E-12
	CJS	0.00E+00	0.00E+00
	BETAAC	2.06E+02	1.44E+02
	J1 MPF102 5.84E-03 -1.05E+00 7.40E+00 4.97E-03 1.15E-05 1.86E-12 7.09E-13	IC VBE VBC	IC -4.93E-04 VBE -6.84E-01 WPF102 VBC 2.87E+00 5.84E-03 VCE -3.55E+00 BETADC 2.07E+02 4.97E-03 RPI 1.09E+04 1.15E-05 RX 1.00E+01 1.86E-12 CBC 3.92E-12 CJS 0.00E+00

MODEL

2) Réponse harmonique : amplification petits signaux

2.a) Prédétermination des amplifications en tension de chaque étage

Le montage base commune intrinsèque dispose d'une impédance d'entrée = $1/g_{m2} = 52,91 \Omega$.

Cette faible valeur pénalise l'amplification en tension du source commune. En effet, posons R_D , l'association parallèle de cette impédance avec R_2 . $R_D = 52,91~\Omega$ // $560~\Omega = 48,34~\Omega$.

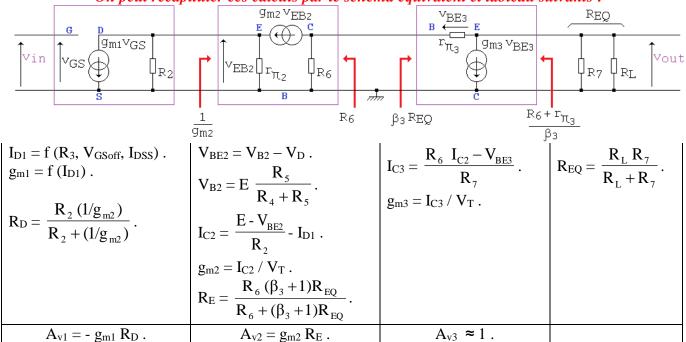
L'étage source commune a une amplification en tension $A_{v1} = -g_{m1} R_D$, soit 4,97 10^{-3} x $48,34 = \boxed{-0,24}$. Remarque : l'annexe 2 montre que l'on peut prédéterminer la valeur de g_{m1} .

L'émetteur suiveur débite sur $R_L = 50 \Omega$ en parallèle avec R_7 .

Posons $R_{EO} = R_L // R_7 = 50 \Omega // 150 \Omega = 37.5 \Omega$.

Son impédance d'entrée est (β_3+1) $R_{EO}=145$ x 37.5=5.437 k Ω , en négligeant $r_{\pi 3}$.

Posons R_E, l'association R₆ avec cette impédance : R_E = 15 k Ω // 5,437 k Ω = 3,99 k Ω .


L'étage base commune a une amplification en tension $A_{v2} = g_{m2} R_E$, (en négligeant la présence de r_0), soit $0.0189 \times 3.99 \text{ k} = \boxed{75.42}$.

Ce collecteur commun a une amplification
$$A_{v3} = \frac{g_{m3} R_{EQ}}{1 + g_{m3} R_{EQ}} = \frac{0.833 \times 37.5}{1 + 0.833 \times 37.5} = \boxed{0.97}.$$

Son impédance de sortie est $(R_6 + r_{\pi 3}) / \beta_3 = (15 \text{ k} + 173) / 144 = 105,4 \Omega.$

En milieu de bande, on attend une amplification totale de A_{v1} A_{v2} $A_{v3} = -0.24$ x 75,42 x 0,97 = -17,54.

article 100

Commentaires:

Lisons le tableau de droite à gauche :

A R_L imposée (50 Ω), R_{EO} est fonction de R_7 .

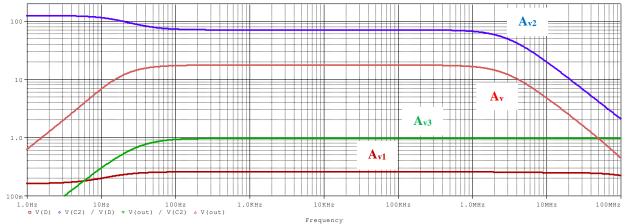
A_{v3} est fonction de R_{EO} et de g_{m3}.

g_{m3} est fonction de I_{C3}, lui-même fonction de I_{C2}.

 A_{v2} est fonction de g_{m2} , elle-même fonction de I_{C2} , et de R_E , fonction de R_6 et R_{EQ} .

I_{C2} est fonction du pont diviseur de tension R₅, R₄, du potentiel V_D et de I_{D1}.

 A_{v1} est fonction de g_{m1} , elle-même fonction de I_{D1} qui dépend de R_3 , et de R_D , fonction de R_2 et g_{m2} .


Il est clair que les 3 étages ne sont pas indépendants.

 \rightarrow en petits signaux, pour avoir une amplification en tension maximale, il ne faut pas chercher à maximiser chaque étage : la recherche d'avoir $A_{v1} > 1$ a conséquence de diminuer fortement A_{v2} .

 \rightarrow en grands signaux : pour avoir la dynamique de tension maximale en sortie (et donc d'une puissance maximale dans R_L), on est amené à choisir un point de polarisation du collecteur commun à fort courant, (donc R_7 faible), ce qui diminue R_{EQ} et donc R_E et donc A_{v2} ...

Et si l'inégalité g_{m3} $R_{EQ} >> 1$ n'est plus respectée, on a une chute de A_{v3} .

2.b) Simulation de l'amplification petits signaux.

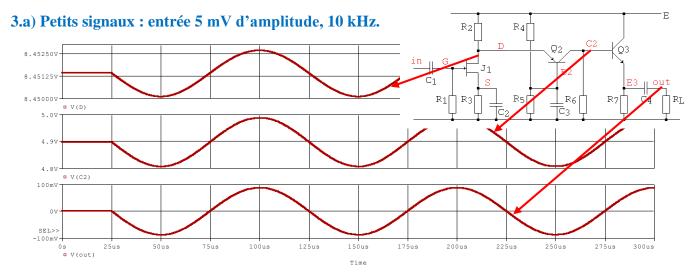
Réponse harmonique de chaque étage. Echelle log en ordonnées

Interprétation:

Les ordonnées sont en échelle log, et affichent directement l'amplification de chaque étage.

En milieu de bande, à 10 kHz, on retrouve les amplifications en tension attendues :

L'étage J_1 : 0,257 (0,24 prédéterminé), l'étage Q_2 : 70,4 (75,4 prédéterminé) et l'étage Q_3 : 0,967 (0,97 prédéterminé).


L'amplification totale est 17,5 (17,54 prédéterminé).

Les coupures basses sont liées aux condensateurs C_1 à C_4 , les coupures hautes aux condensateurs internes aux transistors. C'est le JFET qui pénalise les hautes fréquences.

Cutoff_Lowpass_3dB(V(out))	2.85113meg
Cutoff_Highpass_3dB(V(out))	21.68753
Bande passante: [21 Hz;	; 2,85 MHz]

L'intérêt du montage en base commune est qu'il n'y a pas de condensateurs de jonction (C_{BE} ou C_{BC}) entre l'entrée et la sortie d'un étage amplificateur de tension. Donc pas d'effet Miller.

3) Réponse temporelle : amplification petits et grands signaux, milieu de bande.

Interprétation:

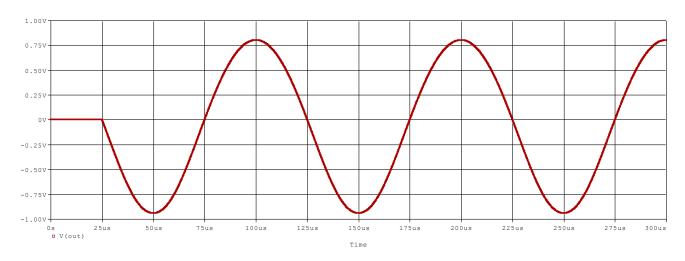
Le signal d'entrée est appliqué à $t = 25 \mu s$. Cela permet de lire facilement les potentiels de polarisation.

Le potentiel de Drain est porté par une composante continue de 8,45 V, ce que donnait la polarisation.

1				
	X Values	200.000u	250.000u	-50.000u
ſ	V(D)	8.4527	8.4501	2.5721m
- T				

En plaçant les curseurs sur les valeurs crête (séparées par une demi période, soit 50 μ s), on peut mesurer l'amplification : $A_{v1} = 2,5721 \text{ mV} / 10 \text{ mV} = 0,257$ (en opposition de phase avec l'entrée).

De même, pour le potentiel C_2 . Polarisation 4,894 V, et 180 mV càc, soit A_{v1} x A_{v2} = - 18, d'où A_{v2} = 69,9.


	X Values	200.000u	250.000u	-50.000u
	V(C2)	4.9871	4.8073	179.854m
_	1			
1	X Values	200.000u	250.000u	-50.000u

La sortie du montage complet présente un signal de 174 $\,$ mV càc, soit $A_v = 17,4$ (en opposition de phase avec l'entrée).

On retrouve bien sûr les valeurs établies en réponse harmonique, car on travaille en petits signaux, et les équations qui gèrent le circuit apparaissent comme linéaires.

Remarque : en affichant le graphe 17.5*V(in) on obtient un sinusoïde qui se superpose à V(out).

3.b) Grands signaux, entrée 50 mV d'amplitude, 10 kHz.

Interprétation:

Avec une amplitude de 50 mV en entrée, soit 100 mV càc, on a, en sortie V(out) une sinusoïde qui présente une légère distorsion et qui délivre 1,744 V càc, soit une amplification en tension apparente de 17,44.

article 100

En conclusion, ce montage présente, pour une amplitude d'entrée inférieure à 50 mV environ, une amplification en tension de - 17,5, soit une amplitude maximale en sortie de 0,87 V sur 50Ω avant distorsion. La bande passante est [21 Hz; 2,85 MHz].

L'étude théorique et les simulations montrent 2 défauts évidents : l'étage d'entrée qui n'amplifie pas la tension, mais qui atténue, et l'étage de sortie qui présente une impédance d'entrée qui pénalise l'amplification du deuxième étage, et sa polarisation. Ce schéma peut être amélioré.

4) Pistes d'améliorations

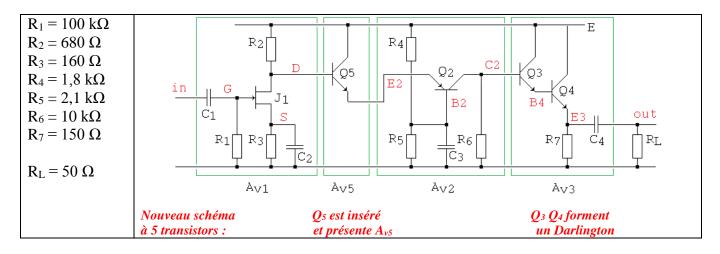
On respecte l'esprit du schéma d'origine, notamment en utilisant les mêmes transistors. On exploite la série E24 pour les résistances, sauf pour R₅.

4.a) Les modifications du schéma

- on intercale un émetteur suiveur entre l'étage 1 et l'étage 2.

De ce fait, l'impédance ramenée par Q₂ est beaucoup plus grande, et A_{v1} augmente.

- on place un Darlington sur l'étage de sortie, afin que Q_3 soit à « super β ».


La conséquence directe est un courant de base (polarisation et dynamique) β fois plus faible, et donc de moins perturber l'étage Q_2 , ce qui fait augmenter A_{v2} . On réalise le Darlington avec un autre 2N 3904.

Cela nécessite de modifier les valeurs numériques des résistances, afin de réajuster la polarisation.

On conserve la nomination J_1 , Q_2 , Q_3 d'origine.

On appelle Q₅ le transistor connecté à J₁ et on appelle Q₄, l'associé à Q₃, qui forme le Darlington.

On conserve les termes A_{v1}, A_{v2}, A_{v3} précédents.

4.a) Polarisation (annexe 5 fichier ampli_j_4bip.cir)

La polarisation de J_1 fixe le potentiel de D, et, par conséquence, celui de E_2 , séparé de V_{BE5} . Pour éviter de faire rentrer Q_2 en saturation, il faut avoir |VCE2| > |VCEsat|, c'est à dire le potentiel C_2 suffisamment faible, ce qui est contradictoire avec une large dynamique de tension en E_3 , d'où en V(out). Le schéma présenté est le fruit de plusieurs essais de valeurs numériques des résistances. Il a été privilégié ici de maximiser l'amplification en tension et non la dynamique de sortie.

		NAME	Q 5	Q2	Q3	Q4
		MODEL	Q2N3904	Q2N3906	Q2N3904	Q2N3904
		IB	4.52E-06	-3.17E-06	1.62E-06	1.83E-04
		IC	5.87E-04	-5.88E-04	1.82E-04	2.97E-02
		VBE	6.50E-01	-6.91E-01	6.19E-01	7.61E-01
		VBC	-4.19E+00	6.02E-01	-6.14E+00	-6.76E+00
1		VCE	4.84E+00	-1.29E+00	6.76E+00	7.52E+00
NAME	J1	BETADC	1.30E+02	1.85E+02	1.12E+02	1.62E+02
MODEL	MPF102	GM	2.25E-02	2.25E-02	7.00E-03	8.90E-01
ID	6.16E-03	RPI	6.69E+03	8.15E+03	1.88E+04	1.57E+02
VGS	-9.86E-01	RX	1.00E+01	1.00E+01	1.00E+01	1.00E+01
VDS	6.82E+00	RO	1.33E+05	3.28E+04	4.42E+05	2.72E+03
GM	5.10E-03	CBE	1.32E-11	1.77E-11	8.39E-12	2.79E-10
GDS	1.22E-05	CBC	2.03E-12	6.93E-12	1.84E-12	1.79E-12
CGS	1.88E-12	CJS	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CGD	7.28E-13	BETAAC	1.50E+02	1.84E+02	1.32E+02	1.40E+02

On remarque que VCE2 n'est que de 1,29 V.

4.c) Analyse harmonique, bande passante

On peut reprendre le schéma donné en page 3.

- L'insertion de Q₅ permet d'isoler l'étage J₁ de Q₂.

Néanmoins Q₅ ramène sur le Drain de J₁ une impédance β_5 x $1/g_{m2} = 150$ x 1/0,0225 = 6,6 k Ω

On pose R'_D =
$$\frac{R_2 (\beta_5/g_{m2})}{R_2 + (\beta_5/g_{m2})} = \frac{680 \text{ x } 6.6\text{k}}{680 + 6.6\text{k}} = 616 \Omega.$$

L'amplification A_{v1} est alors $-g_{m1} R'_{D} = -5.1 \cdot 10^{-3} \times 616 \text{ soit } A_{v1} = -3.14$

- Comme vu précédemment, l'étage Q_2 présente une impédance d'entrée $1/g_{m2}$.

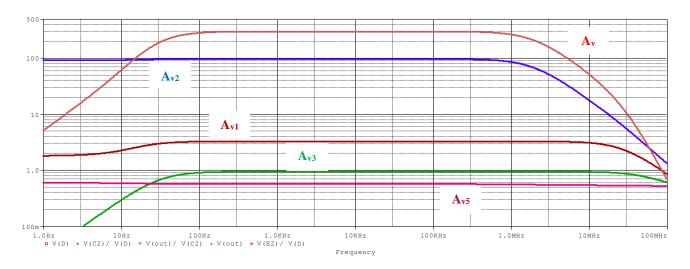
Il s'ensuit que A_{v5} , amplification de l'étage Q_5 , en est : $\frac{g_{m5} \ 1/g_{m2}}{1+g_{m5} \ 1/g_{m2}} \ .$

Le courant continu qui passe dans Q₅ passe également dans Q₂

Comme $g_m = I_C / V_T$, nous aurons $g_{m2} = g_{m5}$ d'où, par conséquence, $A_{v5} = 0.5$

On peut remarquer que l'amélioration créée par Q_5 est entachée d'une atténuation de 2.

La présence de r₀ ne peut pas être négligée. L'annexe 3 donne le calcul de l'amplification en tension de la base commune.


- L'étage central fournit donc
$$A_{v2} = R_6 \left(\frac{g_m + \frac{1}{r_0}}{1 + \frac{R_6}{r_0}} \right), \text{ soit } 10 \text{ k} \left(\frac{0,0225}{1 + \frac{1}{32,8 \text{ k}}} \right) : \boxed{A_{v2} = 172,7}.$$

- L'insertion de Q₄ améliore l'impédance d'entrée de l'étage de sortie. On conserve $A_{v3} = 1$.

L'amplification en tension attendue est A_{v1} x A_{v5} x A_{v2} x A_{v3} .

Soit respectivement : $A_v = -3.14 \times 0.5 \times 172.7 \times 1 = -271.1$.

La simulation AC confirme ces calculs:

Interprétation:

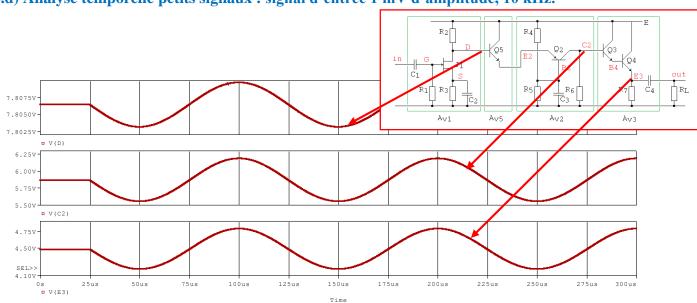
10.000K
3.2768
170.959
943.721m
298.245
564.142m

Calculé:
$A_{v1} = 3,14$
$A_{v2} = 172,$
$A_{v3} = 1$
$A_v = 272,7$
$A_{v5} = 0.5$

En milieu de bande, les amplifications de chaque étage simulées sont en accord avec les calculs de prédétermination.

→ Ce montage présente une amplification en tension de près de 300, soit 49,5 dB.

La bande passante est sensiblement inchangée par rapport à la version 3 transistors.


Remarque:

on peut améliorer la fréquence de coupure basse : en fixant C_4 à 1000 μF (au lieu de 100 μF), elle passe à 13,9 Hz.

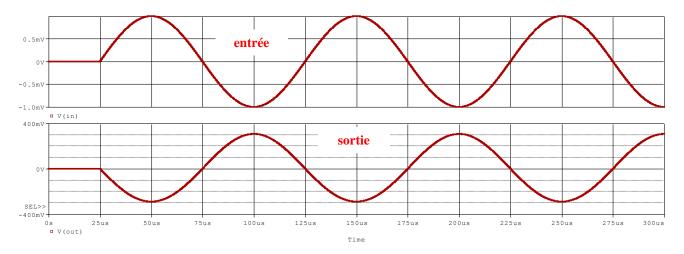
Cutoff_Low	pass_3dB(V(out))	1.89530meg
Cutoff_High	pass_3dB(V(out))	36.49155

Bande passante : [36 Hz ; 1,9 MHz]

4.d) Analyse temporelle petits signaux : signal d'entrée 1 mV d'amplitude, 10 kHz.

Interprétation:

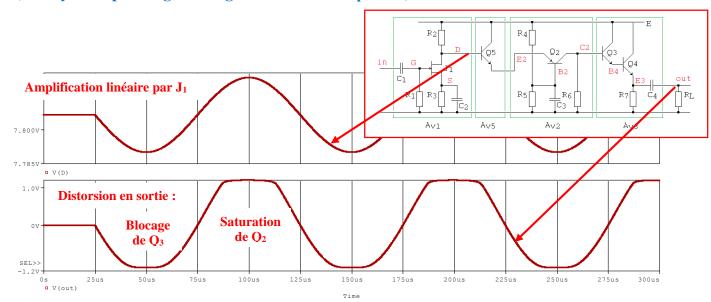
Avec une amplification attendue de 300, il faut injecter un très faible signal à l'entrée pour qu'on reste en régime linéaire en sortie. Il a été choisi une amplitude de 1 mV, donc 2 mV càc. Le signal d'entrée est appliqué à t = 25 µs. On lit ainsi les potentiels de polarisation.


article 100

- Le potentiel de Drain est polarisé à 7,8064 V. Une sinusoïde se superpose avec une variation crête à crête de 6,55 mV, en opposition de phase. On déduit A_{v1} = 3,275.
- En C2, le potentiel continu est 5,8629 V. La variation càc est 631,7 mV, soit A_{v5} x A_{v2} = 631,7 / 6,55 = 96,44
- En E3, le potentiel continu est 4,4822 V. La variation est de 596 mV. Le Darlington a donc $A_{v3}=596/631,7=0,94$.

X Values	200.000u	250.000u	-50.000u
V(E3)	4.7880	4.1923	595.733m
V(C2)	6.1853	5.5537	631.662m
V(D)	7.8097	7.8031	6.5494m

2 curseurs permettent de mesurer les variations crête à crête.


Comme nous sommes en petits signaux, les valeurs issues de ce run sont en parfaite cohérence avec le run AC. Observons maintenant entrée et sortie de tout le montage :

Interprétation:

L'amplification en tension globale se lit facilement : 2 mV càc en entrée, 600 mV càc en sortie, en opposition de phase : $A_v = -300$.

4.e) Analyse temporelle grands signaux : 5 mV d'amplitude, 10 kHz.

Interprétation:

En injectant une sinusoïde de 5 mV d'amplitude, l'étage d'entrée ne présente pas de distorsion. Il fournit en D une sinusoïde de 32,9 mV càc, ce qui reste dans le domaine petits signaux devant la dynamique de tension possible en D.

Avec 10 mV càc en entrée, on déduit une amplification de 3,29 : on retrouve la valeur de A_{v1}.

Par contre, une nette déformation se présente en sortie du montage complet. Celle-ci s'explique pour 2 raisons :

- Le blocage de Q_3 , V_{BE3} descend sous 500 mV, visualisable par V(C2) V(B4),
- Saturation de Q_2 , V_{CE2} atteint 60 mV, visualisable par V(C2) V(E2).

La déformation du signal de sortie se manifeste quand l'amplitude de l'entrée dépasse 3 mV, soit environ 0,9 V en sortie.

En conclusion, ce montage présente, pour une amplitude d'entrée inférieure à 3 mV environ, une amplification en tension de - 300, soit une amplitude maximale en sortie de 0,9 V sur 50Ω avant distorsion. La bande passante est [36 Hz ; 1,9 MHz].

Conclusion

A partir d'un schéma trouvé sur le Net, cet article a présenté une synthèse, sur un seul montage, de plusieurs connaissances de l'électronique analogique. Les simulations ont confirmé les calculs faits « à la main ».

Le schéma d'origine est simple, mais les inconvénients cités le rendent peu intéressant. Le passage à la version à 5 transistors est une vraie évolution, et il forme un bel exemple pédagogique de différents chapitres de l'électronique analogique.

Remarquons néanmoins qu'il n'y a pas un aspect industriel dans cette étude :

Les valeurs des paramètres I_{DSS} , V_{GSoff} du JFET n'étant pas garanties, un changement de composant peut nécessiter de modifier la polarisation.

De plus, il n'a pas été étudié la robustesse vis à vis de la tension d'alimentation. Par exemple, un écart de cette dernière modifie – faiblement – le courant circulant dans R₂, ce qui a néanmoins pour conséquence de modifier les courants de polarisation des 4 transistors bipolaires. Et par la suite, l'amplification en tension.

On pourrait également analyser la conséquence d'un changement de température, qui agit sur les courants de repos, et donc sur l'amplification...

Annexe 1

Point de polarisation

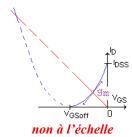
D'où: a = 0.00104 $\Delta = 10,965 \ 10^{-5}$

Résolution de :

$$I_{DSS}(1 - \frac{V_{GS}}{V_{GSoff}})^2 = -\frac{V_{GS}}{R_3}$$

article 100

En développant et ordonnant, on obtient le trinôme :


$$V_{GS}^2 \frac{I_{DSS}}{V_{GSoff}^2} + V_{GS} \left(\frac{1}{R_3} - 2 \frac{I_{DSS}}{V_{GSoff}}\right) + I_{DSS} = 0. \quad \text{Que l'on peut écrire simplement : a $v^2 + b$ $v + c = 0$.}$$

On pose classiquement : $\Delta = b^2 - 4$ a c. Les racines sont donc : $\frac{-b \pm \sqrt{\Delta}}{2 a}$.

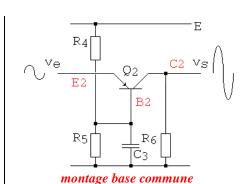
 $V_{GSoff} = -3.41 \text{ V}$ $R_3 = 180 \Omega$. A. N. : $I_{DSS} = 12,09 \text{ mA}$,

$$\begin{array}{ll} b = 0.0126 & c = 0.01209 \\ \text{solution}: \boxed{V_{GS} = -1.046 \text{ V}} & \text{d'où } \boxed{I_D = 5.8 \text{ mA}} \end{array}$$

(l'autre solution est éliminée : correspond à l'autre intersection, placée en pointillé ci-contre)

Annexe 2

Calcul de g_m , pente de la caractéristique $I_D = f(V_{GS})$, au point de polarisation :


$$g_{\rm m} = \frac{dI_{\rm D}}{dV_{\rm GS}} = -2\frac{I_{\rm DSS}}{V_{\rm GSoff}}(1 - \frac{V_{\rm GS}}{V_{\rm GSoff}}) , \ soit \ -2\frac{12,09\ m}{-3,41}(1 - \frac{\text{--}1,046}{\text{--}3,41}) = \boxed{4,916\ m\Omega^{\text{--}1}}.$$

Remarque : il est très fréquent d'avoir la valeur numérique de g_m (en Ω^{-1}) proche de celle de I_D (en A).

Remarque : Comme illustré sur le graphe, pour bénéficier d'une valeur élevée à gm, il est préférable de travaille à I_D proche de I_{DSS}, c'est à dire |V_{GS}| proche de 0 V. Par contre, cela réduit la dynamique de tension applicable à l'entrée.

Annexe 3:

amplification en tension du montage base commune en tenant compte de r_0 .

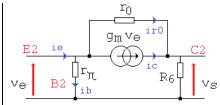


schéma équivalent en dynamique,

La polarisation assure, à chaque électrode, un potentiel continu.

Autour des potentiels continus en E2 et C2, des signaux variables sont présents, respectivement ve, vs, pour signifier entrée et sortie de cet étage.

Le modèle du transistor est classiquement une source de courant i_c commandée par une tension v_{eb}, soit ici, $i_c = g_m v_e$, car la base est au 0 V dynamique.

Pour modéliser l'imperfection de la source de courant émetteur - collecteur, la résistance r₀ est ajoutée.

 $v_s = R_6 \; (i_c + i_{r0}) \qquad \quad o\grave{u} \qquad \; i_c = g_m \; v_e \label{eq:vs}$
$$\begin{split} v_s &= R_6 \; (i_c + i_{r0}) \qquad \text{où} \qquad i_c = g_m \; v_e \qquad \quad et \qquad i_{r0} = (v_e - v_s) \, / \, r_0 \\ v_s &= R_6 \; g_m \; v_e + R_6 \; \frac{v_e}{r_o} - R_6 \; \frac{v_s}{r_o} \; \; \text{soit} : \qquad \quad v_s \; (1 + \frac{R_6}{r_o}) = \; v_e \; R_6 \; (g_m + \frac{1}{r_o}) \end{split}$$
La tension v_s s'écrit : En développant, on a :

 $\text{Il vient alors}: \left| \frac{v_s}{v_e} = R_6 \frac{g_m + \frac{1}{r_0}}{1 + \frac{R_6}{r_0}} \right|. \qquad \qquad \text{Remarque}: \text{si } r_0 \to \infty, \ \frac{v_s}{v_e} \text{ tend vers } g_m \ R_6.$

Annexe 4 : fichier. ampli_j_2bip.cir, prêt à simuler

article 100

Amplificateur à 3 transistors	Q2 C2 B2 D Q2N3906 ; PNP C B E
* fichier ampli j 2bip.cir	R4 A B2 1.8k
* circuit	C3 B2 0 10uF
.LIB eval.lib	R5 B2 0 3.3k
.LIB JFET.lib	R6 C2 0 15k
	Q3 A C2 E3 Q2N3904 ; NPN C B E
VCC A 0 DC=12	R7 E3 0 150
Vin in 0 sin(0 5m 10k 25u 0 0) AC=1	C4 E3 out 100uF
C1 in G 10uF	RL out 0 50
R1 G 0 100k	.OP
J1 D G S MPF102 ; D G S	.AC DEC 100 1 100MEG
	.TRAN 10ns 300us 0 10ns
R2 A D 560	.probe
R3 S 0 180	. END
C2 S 0 100uF	

Annexe 5 : fichier. ampli_j_4bip.cir, prêt à simuler

Amplificateur à 5 transistors	Q2 C2 B2 E2 Q2N3906 ; PNP C B E	
* fichier ampli_j_4bip.cir	R4 A B2 1.8k	
* circuit	R5 B2 0 2.1k	
.LIB eval.lib	C3 B2 0 10uF	
.LIB JFET.lib	R6 C2 0 10k	
	Q3 A C2 B4 Q2N3904 ; NPN C B E	
Valim A 0 DC=12	Q4 A B4 E3 Q2N3904 ; NPN C B E	
Vin in 0 sin(0 1m 10k 25u 0 0) AC=1	R7 E3 0 150	
C1 in G 10uF	C4 E3 out 100uF	
R1 G 0 100k	RL out 0 50	
J1 D G S MPF102 ; D G S	.OP	
R2 A D 680	.AC DEC 100 1 100MEG	
R3 S 0 160	.TRAN 10ns 300u 0 10ns	
C2 S 0 100uF	.probe	
Q5 A D E2 Q2N3904 ; NPN C B E	. END	

articles 1 à 43 : sur le livre

	Tableau récapitulatif des articles PDF disponibles sur ce site					
n°	titre	lien présentation	lien direct article			
	Guide d'installation et d'emploi simplifié	présentation	document PDF			
44	Exemples basiques et des exercices	présentation	document PDF			
45	Un exemple de circuit passif	présentation	document PDF			
46	Un oscillateur Colpitts	présentation	document PDF			
47	Compensation en fréquence des amplificateurs opérationnels	présentation	document PDF			
48	Un amplificateur à transistors bipolaires	présentation	document PDF			
49	Une bascule D Flip Flop CMOS	présentation	document PDF			
50	Une porte XOR à transistors MOS	présentation	document PDF			
51	Un VCO à 12 transistors MOS	présentation	document PDF			
52	Une PLL à moins de 20 transistors MOS	présentation	document PDF			
53	Un oscillateur à résistance négative	présentation	document PDF			
54	Une charge électronique	<u>présentation</u>	document PDF			
55	Un amplificateur en classe C	présentation	document PDF			
56	Le monostable 74 123	présentation	document PDF			
57	Un amplificateur en classe D	présentation	document PDF			
58	Le transformateur en linéaire	présentation	document PDF			
59	La loi d'ohm thermique	présentation	document PDF			
60	Le transformateur en non linéaire	présentation	document PDF			
61	Robustesse d'un oscillateur en anneau	présentation	document PDF			
62	Une alimentation stabilisée	présentation	document PDF			
63	Modélisation d'un haut-parleur	présentation	document PDF			
64	Un synthétiseur de fréquence	présentation	document PDF			
65	Un ampli audio de Sparkfun	présentation	document PDF			
66	Simulation logique et analogique	présentation	document PDF			
67	Un oscillateur à relaxation	présentation	document PDF			
68	Lecteur de TAG RFID 125 kHz	présentation	document PDF			
69	Diagramme de l'œil avec Pspice	présentation	document PDF			
70	Un amplificateur hautes fréquences	présentation	document PDF			
71	Une bizarrerie enfin expliquée	présentation	document PDF			
72	Comprendre le paramétrage de la FFT	présentation	document PDF			
73	La relation de Bennett	présentation	document PDF			
74	Simuler un circuit à plus de 20 transistors avec PSpice Eval	présentation	document PDF			
75	Une horloge biphase sans recouvrement	présentation	document PDF			
76	Quelques simulations sur la diode	présentation	document PDF			
77	Un ampli classe A, avec transformateur de sortie	présentation	document PDF			
78	Des stimuli pour PSpice	présentation	document PDF			
79	Simuler le TL431 : zener ajustable	présentation	document PDF			
80	Un ADC flash	présentation	document PDF			
81	Une chaine d'acquisition : S&H, ADC, DAC	présentation	document PDF			
82	Un amplificateur 50 MHz	présentation	document PDF			
83	Un dérivateur non inverseur	présentation	document PDF			
84	Un amplificateur bipolaire avec push pull CMOS	présentation	document PDF			
85	Rôle des répéteurs logiques dans un circuit intégré	présentation	document PDF			
86	Un driver logique CMOS pour charge 50 ohms	présentation	document PDF			
87	Des triggers de Schmitt et des applications	présentation	document PDF			
88	Un filtre gaussien analogique	présentation	document PDF			
89	Un générateur de bruit rose	<u>présentation</u>	document PDF			
	on generation de bruit 1000	E				

Comprendre l'électronique par la simulation, par S. Dusausay article 100		pages supplémen	taires 2024/2025
90	Un anémomètre à fil chaud : simulation comportementale	<u>présentation</u>	document PDF
91	Un oscillateur à pont de Wien stabilisé par CTN	<u>présentation</u>	document PDF
92	L'emballement thermique d'une diode	<u>présentation</u>	document PDF
93	Les puissances dans un amplificateur	<u>présentation</u>	document PDF
94	Asservissement de puissance dans une résistance	<u>présentation</u>	document PDF
95	Asservissement de la puissance émise par une antenne radio	<u>présentation</u>	document PDF
96	Un driver de LED de puissance	<u>présentation</u>	document PDF
97	Exploiter Pspice pour simuler des filtres numériques	<u>présentation</u>	document PDF
98	Un filtre en cosinus surélevé avec Pspice	<u>présentation</u>	document PDF
99	Effet de la température sur un amplificateur en classe A	<u>présentation</u>	document PDF
100	Un amplificateur à transistors JFET et bipolaires	<u>présentation</u>	document PDF
Supplément, hors article :			
mon cours « Electronique pour les communications numériques ». polycopié couleur 201 pages en pdf			

retour à l'écran d'accueil de ce site